初等复变函数

定义 1. 设 $z \in \mathbb{C}$,定义 $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$.

性质 1. $|e^z| = e^x > 0$.

性质 2. $e^{z_1}e^{z_2}=e^{z_1+z_2}$.

性质 3. e^z 以 2πi 为周期.

由 Euler 公式,有

$$e^{iy} = \cos y + i \sin y.$$

得

$$\cos y = \frac{e^{iy} + e^{-iy}}{2}, \qquad \sin y = \frac{e^{iy} - e^{-iy}}{2i}.$$

于是对 $z \in \mathbb{C}$, 定义

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \qquad \sin y = \frac{e^{iz} - e^{-iz}}{2i}.$$

依然可以定义 $\tan z = \frac{\sin z}{\cos z}$.

性质 4. $\sin z$ 和 $\cos z$ 是无界的.

定义 2. 满足 $e^w = z$ 的复数 w 称为 z 的对数,记作 Ln z.

类似地可以定义 $\arcsin z$, $\arccos z$ 以及 $\arctan z$.

性质 5. $w = \operatorname{Ln} z$ 是多值函数.

定义 3. 对于复数 α , 定义幂函数

$$w = z^{\alpha} = e^{\alpha \operatorname{Ln} z}.$$

性质 6. 当 $\alpha=\frac{m}{n}$, $m,n\in\mathbb{Z}$ 且 (m,n)=1 时, $w=z^{\alpha}$ 是 n 值的. 当 α 是无理数时, $w=z^{\alpha}$ 有无穷多值.